SOME FIXED POINT THEOREMS FOR
CONTRACTIVE AND EXPANSIVE MAPS

GUO-JING JIANG AND SHIN MIN KANG

Abstract. In this paper, fixed point theorems for contractive and
expansive maps are established, some of which extend a few results
of Das and Debata, Edelstein, Fisher, Leader, Shih and Yeh, and
Jungck.

1. Introduction

Let \(f \) and \(g \) be continuous self maps of a compact metric space \((X, d)\)
and let \(N \) be the set of positive integers. For \(x, y \in X \) and \(A, B \subset X \),
define

\[
O(x, f) = \{ f^n x \mid n \in N \cup \{0\} \}, \\
O(x, y, f) = O(x, f) \cup O(y, f), \\
O(x, y, f, g) = O(x, y, f) \cup O(x, y, g), \\
\delta(A, B) = \sup \{ d(a, b) \mid a \in A, b \in B \}.
\]

Let \(\delta(A) \) denote the diameter of \(A \). Define

\[
C_f = \{ h \mid h : X \to X \text{ and } hf = fh \}, \\
A_f = \{ h \mid h : X \to X \text{ and } h \cap_{n \in N} f^n X = \cap_{n \in N} f^n X \}, \\
H_f = \{ h \mid h : X \to X \text{ and } h \cap_{n \in N} f^n X \subset \cap_{n \in N} f^n X \}.
\]

Clearly \(C_f, A_f \) and \(H_f \) are semigroups under composition. Let \(\mathcal{F} \)
and \(\mathcal{T} \) be families of self maps on \(X \). A point \(x \) in \(X \) is called a fixed
point of \(\mathcal{F} \) if \(fx = x \) for \(f \in \mathcal{F} \), a common fixed point of \(\mathcal{F} \) and \(\mathcal{T} \) if
\(fx = gx = x \) for \(f \in \mathcal{F} \) and \(g \in \mathcal{T} \).

Edelstein [2] established the existence of a unique fixed point of a self
map \(f \) of a compact metric space satisfying the inequality \(d(fx, fy) < \)

Received September 7, 1999.
2000 Mathematics Subject Classification: 54H25.
Key words and phrases: fixed point, contractive map, expansive map, compact
metric space, semigroup.
\[d(x, y) \]. Das and Debata [1], Fisher [3], Leader [7], Shih and Yeh [8] obtained a number of generalizations of this result. Jungck [6] proved two interesting results on fixed point in compact metric spaces, one of which deals with the existence of fixed point of \(C_{gf} \) and extends the results of Das and Debata [1], Edelstein [2], Fisher [3], Leader [7], Shih and Yeh [8].

The main purpose of this paper is to extend Jungck’s results to a few much wider classes of maps. In section 2, fixed point theorems are proved by considering a few contractive types conditions for \(H_{gf} \), \(H_f \) and \(H_g \). In section 3, fixed point theorems are established by considering a few expansive types conditions for \(H_{gf} \), \(C_f \) and \(C_g \).

By Proposition 4.1 of Jungck [6] and Proposition 1 of Leader [7], we obtain the following lemmas:

Lemma 1.1. Let \(f \) be a continuous self map of a compact metric space \((X, d) \). Let \(A = \cap_{n \in \mathbb{N}} f^n X \). Then

(i) \(A \) is a nonempty compact subset of \(X \);

(ii) \(\{f^n | n \in \mathbb{N} \cup \{0\}\} \subset A_f \cap C_f \);

(iii) \(C_f \cup A_f \subset H_f \).

Lemma 1.2. Let \(f \) and \(g \) be self maps of a compact metric space \((X, d) \) such that \(gf \) is continuous and \(f \in A_{gf} \). Then \(g \in A_{gf} \).

Lemma 1.3. Let \(f \) and \(g \) be commuting self maps of a compact metric space \((X, d) \) such that \(gf \) is continuous. Then \(f, g \in A_{gf} \).

2. Fixed point theorems for \(H_{gf} \), \(H_f \) and \(H_g \)

Theorem 2.1. Let \(f \) and \(g \) be self maps of a compact metric space \((X, d) \) such that \(gf \) is continuous and \(f \in A_{gf} \). Assume that there exist \(S, T \in A_{gf} \) satisfying

\[
(2.1) \quad d(Sx, Ty) < \delta(\cup_{h \in H_{gf}} h O(x, y, f, g))
\]

for \(Sx \neq Ty \). Then \(f, g, S \) and \(T \) have a unique common fixed point which is a unique fixed point of \(H_{gf} \).

Proof. Let \(A = \cap_{n \in \mathbb{N}} (gf)^n X \). It follows from (i) of Lemma 1.1 that \(A \) is a nonempty compact subset of \(X \). Thus there exist \(a, b \in A \) such that \(\delta(A) = d(a, b) \). Since \(S, T \in A_{gf} \), we can find \(x, y \in A \) such that \(Sx = a \) and \(Ty = b \). By Lemma 1.2 we have \(g \in A_{gf} \). Note that
$f \in A_{gf}$. Then $O(x, y, f, g) \subset A$. We assert that A is a singleton. If not, then $\delta(A) > 0$. Using (2.1),

$$d(Sx, Ty) < \delta(\cup_{h \in H_{gf}} h O(x, y, f, g))$$
$$\leq \delta(\cup_{h \in H_{gf}} h A)$$
$$\leq \delta(A),$$

which implies that

$$0 < \delta(A) = d(Sx, Ty) < \delta(A),$$

which is impossible. Hence A is a singleton, i.e., $A = \{w\}$ for some w in X. This implies that w is a fixed point of H_{gf}, in particular, w is a common fixed point of f, g, S and T.

If v is another common fixed point of f, g, S and T, then $(gf)^n = v$ for all n in N. This implies $v \in A$ and $v = w$. Hence f, g, S and T have a unique common fixed point w. Note that f, g, S and $T \in A_{gf} \subset H_{gf}$. Therefore H_{gf} has a unique fixed point w. This completes the proof. \Box

Corollary 2.1. Let f and g be self maps of a compact metric space (X, d) such that gf is continuous and $f \in A_{gf}$. If $fx \neq gy$ implies

$$d(fx, gy) < \delta(\cup_{h \in H_{gf}} h O(x, y, f, g)),$$

then f and g have a unique common fixed point which is a unique fixed point of H_{gf}.

Proof. Corollary 2.1 follows from Lemma 1.2 and Theorem 2.1. \Box

Remark 2.1. By (iii) of Lemma 1.1 and Lemma 1.3 and Example 3.1 in section 3, it follows that Corollary 2.1 generalizes properly Theorem 4.2 of Jungck [6].

Corollary 2.2. Let f be a continuous self map of a compact metric space (X, d). Assume that there exist $S, T \in A_f$ satisfying

$$d(Sx, Ty) < \delta(\cup_{h \in H_f} h O(x, y, f))$$

for $Sx \neq Ty$. Then f has a uniformly contractive fixed point which is a unique fixed point of H_f.

Proof. Take $g = i_X$ (the identity map) in Theorem 2.1. By (ii) of Lemma 1.1, $f \in A_f$. Note that $O(x, y, f, i_X) = O(x, y, f)$. It follows from Theorem 2.1 that $\cap_{n \in N} f^n X = \{w\}$ and w is a unique fixed point of H_f. By Theorem 1 of Leader [7], we conclude that f has a uniformly contractive fixed point w. This completes the proof. \[\square\]

Remark 2.2. Corollary 4.3 of Jungck [6] is a special case of Corollary 2.2.

Theorem 2.2. Let f and g be self maps of a compact metric space (X, d) such that gf is continuous. Assume that there exist $S, T \in A_{gf}$ satisfying
\[d(Sx, Ty) < \delta(\cup_{h \in H_{gf}} \{hx, hy\})\]
for $Sx \neq Ty$. Then H_{gf} has a unique fixed point.

Proof. It follows from (ii) of Lemma 1.1 that $gf \in H_{gf}$. The remaining portion of the proof can be derived as in Theorem 2.1. \[\square\]

Theorem 2.3. Let f and g be self maps of a compact metric space (X, d) such that gf is continuous. Assume that for every compact subset Y of X which contains more than one element and is mapped into itself by gf, there exist $S, T \in A_{gf}$ satisfying
\[(2.2) \quad d(Sx, Ty) < \delta(Y)\]
for all x, y in Y. Then H_{gf} has a unique fixed point.

Proof. Let $A = \cap_{n \in N} (gf)^n X$. By (i) and (ii) of Lemma 1.1, A is a nonempty compact subset of X and $gf \in A_{gf}$. Suppose that $\delta(A) > 0$. Then there exist $a, b \in A$ such that $\delta(A) = d(a, b)$. Since $SA = A = TA$, we can find $x, y \in A$ such that $Sx = a$ and $Ty = b$. By (2.2), we have
\[0 < \delta(A) = d(Sx, Ty) < \delta(A),\]
which is a contradiction. Hence $\delta(A) = 0$, i.e., A is a singleton. The remaining portion of the proof can be derived as in Theorem 2.1. This completes the proof. \[\square\]

Theorem 2.4. Let f and g be continuous self maps of a compact metric space (X, d). Assume that there exist $S \in A_f$ and $T \in A_g$ satisfying
\[(2.3) \quad d(Sx, Ty) < \delta(\cup_{u \in H_f} u O(x, f), \cup_{v \in H_g} v O(y, g))\]
for $Sx \neq Ty$. Then f, g, S and T have a unique common fixed point which is a unique common fixed point of H_f and H_g.
Proof. Let $A = \cap_{n \in \mathbb{N}} f^n X$ and $B = \cap_{n \in \mathbb{N}} g^n X$. By (i) and (ii) of Lemma 1.1, A and B are nonempty compact subsets of X and $f A = A$, $g B = B$. Thus there exists $a \in A$ and $b \in B$ such that $\delta(A, B) = d(a, b)$. Note that $SA = A$ and $TB = B$. Then there exist $x \in A$ and $y \in B$ such that $S x = a$ and $T y = b$. Suppose that $a \neq b$. Then by (2.3),

$$d(a, b) = d(S x, T y)$$

$$< \delta(\cup_{u \in H_f} u O(x, f), \cup_{v \in H_g} v O(y, g))$$

$$\leq \delta(\cup_{u \in H_f} u A, \cup_{v \in H_g} v B)$$

$$\leq \delta(A, B) = d(a, b),$$

which is a contradiction. Therefore $a = b$ and $\delta(A, B) = 0$. This implies $A = B = \{w\}$, say. Clearly w is a common fixed point of H_f and H_g. Since every common fixed point of f and S belongs to $A = \{w\}$ and $f w = S w = w$, so f and S have a unique common fixed point w. Similarly w is also a unique common fixed point of g and T. Thus w is a unique common fixed point of H_f and H_g. This completes the proof. □

3. Nonunique fixed points

Theorem 3.1. Let f and g be continuous self maps of a compact metric space (X, d) satisfying $f \in A_{gf}$. If $f x \neq g y$ implies

$$d(f x, g y) > \inf\{d(u x, f u x), d(u y, f u y), d(u x, g u x),$$

$$d(u y, g u y), d(h x, h y) \mid u \in H_{gf}, h \in C_f \cap C_g\},$$

then at least one of f or g has a fixed point.

Proof. Let $A = \cap_{n \in \mathbb{N}} (gf)^n X$. By (i) of Lemma 1.1, A is a nonempty compact subset of X. It follows from Lemma 1.2 that $g \in A_{gf}$. By the continuity of f and g and compactness of A, there exist $a, b \in A$ such that

$$d(a, f a) \leq d(x, f x) \quad \text{and} \quad d(b, g b) \leq d(x, g x)$$

for all $x \in A$. We assume without loss of generality that

$$d(a, f a) \leq d(b, g b)$$
Note that $gA = A$. Then there exists a point $w \in A$ such that $gw = a$. Suppose that $a \neq fa$, i.e., $fa \neq gw$. By (3.1), (3.2) and (3.3) we have

$$d(fa, gw) > \inf \{d(ua, fua), d(uw, fuw), d(ua, gua),$$

$$d(uw, guw), d(ha, hw) \mid u \in H_{gf}, h \in C_f \cap C_g \}$$

$$\geq \inf \{d(a, fa), d(b, gb), d(hgw, hw) \mid u \in H_{gf}, h \in C_f \cap C_g \}$$

$$= \inf \{d(a, fa), d(ghw, hw) \mid u \in H_{gf}, h \in C_f \cap C_g \}$$

$$= d(a, fa),$$

which implies that

$$d(a, fa) = d(fa, gw) > d(a, fa),$$

which is impossible. Hence $a = fa$. This completes the proof. \qed

Remark 3.1. The following example demonstrates that Theorem 3.1 is more general than Theorem 4.4 of Jungck [6].

Example 3.1. Let $X = \{1, 2, 5\}$ and $d(x, y) = |x - y|$. Define $f, g : X \to X$ by

$$f1 = f2 = g1 = 1 \quad \text{and} \quad f5 = g2 = g5 = 2.$$

Then f and g are self maps of a compact metric space (X, d) such that gf is continuous and $\bigcap_{n \in \mathbb{N}} (gf)^n X = \{1\} = f \cap_{n \in \mathbb{N}} (gf)^n X$. It is now a simple matter to show that

$$0 = \inf \{d(ux, fux), d(uy, fuy), d(ux, gux),$$

$$d(uy, guy), d(hx, hy) \mid u \in H_{gf}, h \in C_f \cap C_g \}$$

$$< d(fx, gy) = 1$$

$$< \delta(\bigcup_{h \in H_{gf}} h O(x, y, f, g)) = 4$$

for $fx \neq gy$. Thus the conditions of the above Corollary 2.1 and Theorem 3.1 are satisfied but Theorems 4.2 and 4.4 of Jungck [6] are not applicable since $fg5 = 1 \neq 2 = gf5$.

Remark 3.2. Example 4.4 of Jungck [6] shows that not both f and g of the above Theorem 3.1 need have a fixed point and that the fixed point may not be unique.

The proof of the following result goes in a similar fashion as that of Theorem 3.1, so we omit the proof.
Theorem 3.2. Let f and g be self maps of a compact metric space (X, d) satisfying gf is continuous. Assume that there exist $S, T \in A_{gf}$ such that S and T are continuous and
\[
\begin{align*}
 d(Sx, Ty) &> \inf \{ d(ux, Sux), d(uy, Suy), d(ux, Tux), \\
 &\quad d(u, Tuy), d(x, y) \mid u \in H_{gf} \}
\end{align*}
\]
for $Sx \neq Ty$. Then at least one of S or T has a fixed point.

References

Guo-Jing Jiang
Dalian Management Cadre’s College
Dalian, Liaoning 116031
People’s Republic of China

Shin Min Kang
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
E-mail: smkang@nongae.gsmu.ac.kr