A CONVERGENCE THEOREM FOR FEYNMAN’S OPERATIONAL CALCULUS: THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

BYUNG MOO ANH* AND CHOON HO LEE

Abstract. Feynman’s operational calculus for noncommuting operators was studied via measures on the time interval. We investigate that if a sequence of \(p \)-tuples of measures converges to another \(p \)-tuple of measures, then the corresponding sequence of operational calculi in the time dependent setting converges to the operational calculus determined by the limiting \(p \)-tuple of measures.

1. Introduction

Let \(X \) be a separable Banach space over the complex numbers and let \(\mathcal{L}(X) \) denote the space of bounded linear operators on \(X \). Fix \(T > 0 \). For \(i = 1, \ldots, p \) let \(A_i : [0,T] \to \mathcal{L}(X) \) be maps that are measurable in the sense that \(A_i^{-1}(E) \) is a Borel set in \([0,T]\) for any strong operator open set \(E \subset \mathcal{L}(X) \). To each \(A_i(\cdot) \) we associate a finite continuous Borel measure \(\mu_i \) on \([0,T]\) and we require that, for each \(i \),

\[
 r_i = \int_{[0,T]} ||A_i(s)||\mathcal{L}(X)|\mu_i|(ds) < \infty.
\]

Given a positive integer \(p \) and \(p \) positive numbers \(r_1, \ldots, r_p \), let \(\mathcal{A}(r_1, \ldots, r_p) \) be the space of complex-valued functions of \(p \) complex variables \(f(z_1, \ldots, z_p) \), which are analytic at \((0, \cdots, 0)\), and are such that their power series expansion

\[
 f(z_1, \cdots, z_p) = \sum_{m_1, \cdots, m_p=0}^{\infty} c_{m_1, \cdots, m_p} z_1^{m_1} \cdots z_p^{m_p}
\]

Received February 5, 2004.
2000 Mathematics Subject Classification: 47A60.
Key words and phrases: Feynman’s operational calculus, disentangling.
*This work was supported by Korea Research Foundation Grant (KRF-2001-002-D00035).
converges absolutely, at least on the closed polydisk \(|z_1| \leq r_1, \cdots, |z_p| \leq r_p\). Such functions are analytic at least in the open polydisk \(|z_1| < r_1, \cdots, |z_p| < r_p\).

For \(f \in \mathcal{A}(r_1, \cdots, r_p)\) given by (1), we let

\[
\|f\| = \|f\|_{\mathcal{A}(r_1, \cdots, r_p)} := \sum_{m_1, \cdots, m_p=0}^{\infty} |c_{m_1, \cdots, m_p}| r_1^{m_1} \cdots r_p^{m_p}.
\]

The function on \(\mathcal{A}(r_1, \cdots, r_p)\) defined by (2) makes \(\mathcal{A}(r_1, \cdots, r_p)\) into a commutative Banach algebra [3].

To the algebra \(\mathcal{A}(r_1, \cdots, r_p)\) we associate a disentangling algebra by replacing the \(z_i\)'s with formal commuting objects \((A_i(\cdot), \mu_i)\), \(i = 1, \cdots, p\). Consider the collection \(\mathbb{D}(\{(A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)\})\) of all expressions of the form

\[
f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)) = \sum_{m_1, \cdots, m_p=0}^{\infty} c_{m_1, \cdots, m_p} ((A_1(\cdot), \mu_1))^{m_1} \cdots ((A_p(\cdot), \mu_p))^{m_p}
\]

where \(c_{m_1, \cdots, m_p} \in \mathbb{C}\) for all \(m_1, \cdots, m_p = 0, 1, \cdots, \)

\[
\|f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))\| = \|f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))\|_{\mathbb{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))} := \sum_{m_1, \cdots, m_p=0}^{\infty} |c_{m_1, \cdots, m_p}| r_1^{m_1} \cdots r_p^{m_p} < \infty
\]

where \(r_i = \int_{0,2} ||A_i(s)||_{\mathcal{L}(\mathcal{X})} |\mu_i||\,ds\), \(i = 1, 2, \cdots, p\).

Rather than using the notation \((A_i(\cdot), \mu_i)\) below, we will often abbreviate to \(A_i(\cdot)\), especially when carrying out calculations. We will often write \(\mathbb{D}\) in place of \(\mathbb{D}(\{A_1(\cdot), \mu_1\}, \cdots, A_p(\cdot))\) or \(\mathbb{D}(\{A_1(\cdot), \mu_1\}, \cdots, (A_p(\cdot), \mu_p)\})\).

Adding and scalar multiplying such expressions coordinatewise, we can easily see that \(\mathbb{D}(\{A_1(\cdot), \mu_1\}, \cdots, (A_p(\cdot), \mu_p)\})\) is a vector space and that \(\| \cdot \|_\mathbb{D}\) defined by (3) is a norm. The normed linear space \(\mathbb{D}(\{A_1(\cdot), \mu_1\}, \cdots, (A_p(\cdot), \mu_p)\}), \| \cdot \|_\mathbb{D}\) can be identified with the weighted \(l_1\)-space, where the weight at the index \((m_1, \cdots, m_p)\) is \(r_1^{m_1} \cdots r_p^{m_p} \). It follows that \(\mathbb{D}(\{A_1(\cdot), \mu_1\}, \cdots, (A_p(\cdot), \mu_p)\})\) is a commutative Banach algebra with identity [7].
We refer to $\mathcal{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$ as the disentangling algebra associated with the p-tuple $((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$.

For $m = 0, 1, \cdots$, let S_m denote the set of all permutations of the integers $\{1, \cdots, m\}$, and given $\pi \in S_m$ we let

$$\Delta_m(\pi) = \{(s_1, \cdots, s_m) \in [0, T]^m : 0 < s_{\pi(1)} < \cdots < s_{\pi(m)} < T\}.$$

Now for nonnegative integers m_1, \cdots, m_p and $m = m_1 + \cdots + m_p$, we define

$$C_i(s) = \begin{cases} A_1(s), & \text{if } i \in \{1, \cdots, m_1\} \\ A_2(s), & \text{if } i \in \{m_1 + 1, \cdots, m_1 + m_2\} \\ \vdots & \\ A_p(s), & \text{if } i \in \{m_1 + \cdots + m_{p-1} + 1, \cdots, m\} \end{cases}$$

for $i = 1, \cdots, m$ and for all $0 \leq s \leq T$.

Definition 1. Let $P_{m_1, \cdots, m_p}(z_1, \cdots, z_p) = z_1^{m_1} \cdots z_p^{m_p}$. We define the action of the disentangling map on this monomial by

$$T_{\mu_1, \cdots, \mu_p}P_{m_1, \cdots, m_p}(A_1(\cdot), \cdots, A_p(\cdot)) = T_{\mu_1, \cdots, \mu_p}((A_1(\cdot))^{m_1} \cdots (A_p(\cdot))^{m_p})$$

$$:= \sum_{\pi \in S_m} \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)})$$

$$(\mu_1^{m_1} \times \cdots \times \mu_p^{m_p})(ds_1, \cdots, ds_m).$$

Finally for $f \in \mathcal{D}((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p))$ given by

$$f(A_1(\cdot), \cdots, A_p(\cdot)) = \sum_{m_1, \cdots, m_p = 0}^{\infty} c_{m_1, \cdots, m_p}(A_1(\cdot))^{m_1} \cdots (A_p(\cdot))^{m_p}$$

we set

$$T_{\mu_1, \cdots, \mu_p}f(A_1(\cdot), \cdots, A_p(\cdot))$$

$$:= \sum_{m_1, \cdots, m_p = 0}^{\infty} c_{m_1, \cdots, m_p}(A_1(\cdot))^{m_1} \cdots (A_p(\cdot))^{m_p}.$$

We will often use the alternative notation:

$$P_{\mu_1, \cdots, \mu_p}(A_1(\cdot), \cdots, A_p(\cdot)) = T_{\mu_1, \cdots, \mu_p}P_{m_1, \cdots, m_p}(A_1(\cdot), \cdots, A_p(\cdot))$$

and

$$f_{\mu_1, \cdots, \mu_p}(A_1(\cdot), \cdots, A_p(\cdot)) = T_{\mu_1, \cdots, \mu_p}f(A_1(\cdot), \cdots, A_p(\cdot)).$$

The following result is Proposition 2.2 of [7].
Proposition 1. The disentangling map T_{μ_1, \ldots, μ_p} is a bounded linear operator from $D((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p))$ to $L(X)$. In fact, $\|T_{\mu_1, \ldots, \mu_p}\| \leq 1$.

2. Stability theorem

Let $\{\nu_n\}_{n=1}^\infty$ be a sequence of Borel probability measures on $[0, T]$. We say that ν_n converges weakly to a Borel probability measure ν and write $\nu_n \rightharpoonup \nu$ provided that

$$\int_{[0, T]} b(s) \nu_n(ds) \to \int_{[0, T]} b(s) \nu(ds)$$

for every bounded continuous function b on $[0, T]$.

Proposition 2. Let $A_i : [0, T] \to L(X)$ be continuous for each $i = 1, 2, \ldots, p$. Let $\{\mu_i,n\}_{n=1}^\infty$ be sequences of continuous Borel probability measures on $[0, T]$ such that $\mu_{i,n} \rightharpoonup \mu_i$ for each i. Then for any nonnegative integers m_1, \ldots, m_p and for any $\phi \in X$

$$\lim_{n \to \infty} P^{m_1, \ldots, m_p}_{\mu_1,n, \ldots, \mu_p,n}(A_1(\cdot), \ldots, A_p(\cdot))\phi = P^{m_1, \ldots, m_p}_{\mu_1, \ldots, \mu_p}(A_1(\cdot), \ldots, A_p(\cdot))\phi.$$

Proof. $\{\mu_{i,n}^{m_1} \times \cdots \times \mu_{i,n}^{m_p}\}$ is a sequence of continuous probability measures on $[0, T]^m$ since each term in the product is a continuous probability measure. And $[0, T]^m$ is separable. By Theorem 3.2 of [1] $\mu_{i,n}^{m_1} \times \cdots \times \mu_{i,n}^{m_p} \rightharpoonup \mu_{i,n}^{m_1} \times \cdots \times \mu_{i,n}^{m_p}$ since $\mu_{i,n} \rightharpoonup \mu_i$ for each i. For each $\phi \in X$, $C_{\pi(m)}(\cdot) \cdots C_{\pi(1)}(\cdot) : [0, T]^m \to X$ is continuous for each $\pi \in S_m$. From Theorem 5.1 of [1] we have

$$\lim_{n \to \infty} \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)})\phi$$

$$= \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)})\phi$$

Hence the conclusion follows. \square
Lemma 3. Let \(\mu_1, \ldots, \mu_p, \mu_1, \ldots, \mu_p, n = 1, 2, \ldots \) be continuous probability measures. Suppose for \(i = 1, 2, \ldots, p \)

\[
\bar{r}_i = \sup \{ r_{i,1}, \ldots, r_{i,n}, \cdots \} < \infty
\]

where \(r_i = \int_{[0,T]} \| A_i(s) \| |\mu_i|(ds) \) and \(r_{i,n} = \int_{[0,T]} \| A_i(s) \| |\mu_{i,n}|(ds) \).

Then for any \(f \in \mathcal{A}(\bar{r}_1, \ldots, \bar{r}_p) \),

\[
f((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)) \in \mathbb{D}(\mathcal{D}_1(\cdot), \mu_1, \ldots, \mathcal{D}_p(\cdot), \mu_p)
\]

and

\[
f((A_1(\cdot), \mu_1, n), \ldots, (A_p(\cdot), \mu_p, n)) \in \mathbb{D}(\mathcal{D}_1(\cdot), \mu_1, n, \ldots, \mathcal{D}_p(\cdot), \mu_p, n)
\]

for any \(n = 1, 2, \ldots \).

Proof. Suppose that

\[
f(z_1, \ldots, z_p) = \sum_{m_1, \ldots, m_p = 0}^{\infty} c_{m_1, \ldots, m_p} z_1^{m_1} \cdots z_p^{m_p}
\]

such that \(\sum_{m_1, \ldots, m_p = 0}^{\infty} |c_{m_1, \ldots, m_p}| \bar{r}_1^{m_1} \cdots \bar{r}_p^{m_p} < \infty \). Then

\[
||f((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p))|| = \sum_{m_1, \ldots, m_p = 0}^{\infty} |c_{m_1, \ldots, m_p}| \left[\int_{[0,T]} \| A_1(s) \| |\mu_1|(ds) \right]^{m_1} \cdots \left[\int_{[0,T]} \| A_p(s) \| |\mu_p|(ds) \right]^{m_p}
\]

\[
\leq \sum_{m_1, \ldots, m_p = 0}^{\infty} |c_{m_1, \ldots, m_p}| \bar{r}_1^{m_1} \cdots \bar{r}_p^{m_p} < \infty.
\]

Hence \(f((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)) \in \mathbb{D}(\mathcal{D}_1(\cdot), \mu_1, \ldots, \mathcal{D}_p(\cdot), \mu_p) \).

Similarly we can check that \(f((A_1(\cdot), \mu_1, n), \ldots, (A_p(\cdot), \mu_p, n)) \in \mathbb{D}(\mathcal{D}_1(\cdot), \mu_1, n, \ldots, \mathcal{D}_p(\cdot), \mu_p, n) \). \(\square \)
Theorem 4. Let the hypotheses of Proposition 2 be satisfied. Further suppose that for each $i = 1, 2, \cdots, p$ and $n = 1, 2, \cdots, r_i, r_{i,n}$ are given as in Lemma 3. Let $T_{\mu_{1,n}, \cdots, \mu_{p,n}}$ denote the disentangling map corresponding to the n^th term of sequences of measures. Then for any $f \in \mathcal{A}(\bar{r}_1, \cdots, \bar{r}_p)$, and for any $\phi \in X$,

$$
\lim_{n \to \infty} T_{\mu_{1,n}, \cdots, \mu_{p,n}} f((A_1(\cdot), \mu_{1,n}), \cdots, (A_p(\cdot), \mu_{p,n})) \phi = T_{\mu_1, \cdots, \mu_p} f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)) \phi.
$$

Proof. We have

$$
\|T_{\mu_{1,n}, \cdots, \mu_{p,n}} f((A_1(\cdot), \mu_{1,n}), \cdots, (A_p(\cdot), \mu_{p,n})) \phi - T_{\mu_1, \cdots, \mu_p} f((A_1(\cdot), \mu_1), \cdots, (A_p(\cdot), \mu_p)) \phi\|

\leq \sum_{m_1, \cdots, m_p=0}^{\infty} |c_{m_1, \cdots, m_p}| |P_{\mu_{1,n}, \cdots, \mu_{p,n}}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot)) \phi |

- P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot)) \phi ||.
$$

Note that

$$
|c_{m_1, \cdots, m_p}| |P_{\mu_{1,n}, \cdots, \mu_{p,n}}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot)) \phi |

- P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot)) \phi ||

\leq |c_{m_1, \cdots, m_p}| ||P_{\mu_{1,n}, \cdots, \mu_{p,n}}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot))||

+ ||P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p} (A_1(\cdot), \cdots, A_p(\cdot))|| ||\phi||

\leq |c_{m_1, \cdots, m_p}| ||\int_{[0,T]} |A_1(s)|| \mu_{1,n}(\mid (ds)\mid |^{m_1} \cdots

\int_{[0,T]} |A_p(s)|| \mu_{p,n}(\mid (ds)\mid |^{m_p} + \int_{[0,T]} ||A_1(s)|| \mu_{1}(\mid (ds)\mid |^{m_1} \cdots

\int_{[0,T]} ||A_p(s)|| \mu_{p}(\mid (ds)\mid |^{m_p}) ||\phi||

= |c_{m_1, \cdots, m_p}| [r_{1,n}^{m_1} \cdots r_{p,n}^{m_p} + r_{1}^{m_1} \cdots r_{p}^{m_p}] ||\phi||

\leq 2|c_{m_1, \cdots, m_p}| r_{1,n}^{m_1} \cdots r_{p,n}^{m_p} ||\phi||.
Then for any

Further assume that

Lebesgue Dominated Convergence Theorem, we obtain the result. □

Theorem 5. Let $A_i : [0, T] \to \mathcal{L}(X)$ be measurable for each $i = 1, 2, \cdots, p$. Let \(\{\mu_{i,n}\}_{n=1}^{\infty} \) for $i = 1, 2, \cdots, p$ be sequences of continuous Borel probability measures on $[0, T]$ such that $\mu_{i,n} \to \mu_i$ for each i. Further assume that $M_i := \sup_{s \in [0,T]} |A_i(s)| < \infty$ for each $i = 1, \cdots, p$. Then for any $f \in \mathcal{A}(M_1, \cdots, M_p)$,

\[
\lim_{n \to \infty} T_{\mu_{1,n}} \cdots \mu_{p,n} f((A_1(\cdot), \mu_{1,n}^\top), \cdots, (A_p(\cdot), \mu_{p,n}^\top)) = T_{\mu_1} \cdots \mu_p f((A_1(\cdot), \mu_1^\top), \cdots, (A_p(\cdot), \mu_p^\top)).
\]

Proof. First we consider $P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p}(A_1(\cdot), \cdots, A_p(\cdot))$. We see that

\[
||T_{\mu_{1,n}} \cdots \mu_{p,n} P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p}(A_1(\cdot), \mu_{1,n}^\top), \cdots, (A_p(\cdot), \mu_{p,n}^\top))
\]

\[
- T_{\mu_1} \cdots \mu_p P_{\mu_1, \cdots, \mu_p}^{m_1, \cdots, m_p}(A_1(\cdot), \mu_1^\top), \cdots, (A_p(\cdot), \mu_p^\top))||
\]

\[
= || \sum_{\pi \in S_m} \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)}) (\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p})
\]

\[
(\mu_{1,n}^{\top}) \sum_{\pi \in S_m} \int_{\Delta_m(\pi)} C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)}) (\mu_1^{m_1} \times \cdots \mu_p^{m_p})
\]

\[
(\mu_1^{\top}) \leq \sum_{\pi \in S_m} \int_{\Delta_m(\pi)} \left| C_{\pi(m)}(s_{\pi(m)}) \cdots C_{\pi(1)}(s_{\pi(1)}) \right|
\]

\[
|\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}(ds_1, \cdots, ds_m) - \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}(ds_1, \cdots, ds_m)|
\]

\[
\leq \sum_{\pi \in S_m} M_1^{m_1} \cdots M_p^{m_p} |\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}(\Delta_m(\pi)) -
\]

\[
\mu_1^{m_1} \times \cdots \times \mu_p^{m_p}(\Delta_m(\pi))|.
\]

Here $\{\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}\}$ is a sequence of continuous probability measures on $[0, T]^m$. Since $[0, T]^m$ is separable and $\mu_{i,n} \to \mu_i$ for each i, $\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p} \to \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}$ using Theorem 3.2 of [1]. We can apply (v) of Theorem 2.1 of [1] to conclude that

\[
|\mu_{1,n}^{m_1} \times \cdots \times \mu_{p,n}^{m_p}(\Delta_m(\pi)) - \mu_1^{m_1} \times \cdots \times \mu_p^{m_p}(\Delta_m(\pi))| \to 0
\]
as \(n \to \infty \). We therefore conclude

\[
\lim_{n \to \infty} T_{\mu_1, \ldots, \mu_p, n} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n})) = T_{\mu_1, \ldots, \mu_p} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)).
\]

We now turn to \(T_{\mu_1, \ldots, \mu_p} f((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)) \). For \(f \in \mathcal{A}(M_1, \ldots, M_p) \) we have

\[
\| T_{\mu_1, \ldots, \mu_p, n} f((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n})) - T_{\mu_1, \ldots, \mu_p} f((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)) \|
\]

\[
\leq \sum_{m_1, \ldots, m_p=0}^{\infty} c_{m_1, \ldots, m_p} \| T_{\mu_1, \ldots, \mu_p, n} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n})
\]

\[
-(A_p(\cdot), \mu_{p,n}))
\]

\[
\leq \sum_{m_1, \ldots, m_p=0}^{\infty} |c_{m_1, \ldots, m_p}| \| T_{\mu_1, \ldots, \mu_p, n} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n}))
\]

\[
-(A_p(\cdot), \mu_{p,n}))
\]

Now

\[
|c_{m_1, \ldots, m_p}| \| T_{\mu_1, \ldots, \mu_p, n} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n}))
\]

\[
-(A_p(\cdot), \mu_{p,n}))
\]

\[
\leq |c_{m_1, \ldots, m_p}| \left(\| T_{\mu_1, \ldots, \mu_p, n} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_{1,n}), \ldots, (A_p(\cdot), \mu_{p,n})) \| + \| T_{\mu_1, \ldots, \mu_p} P^{m_1, \ldots, m_p}((A_1(\cdot), \mu_1), \ldots, (A_p(\cdot), \mu_p)) \| \right)
\]

\[
\leq |c_{m_1, \ldots, m_p}| \left(\left[\int_{[0,T]} \| A_1(s) \| \mu_{1,n}((ds))^{m_1} \right] \cdots \left[\int_{[0,T]} \| A_p(s) \| \mu_{p,n}((ds))^{m_p} \right] \
\right.
\]

\[
+ \left. \left[\int_{[0,T]} \| A_1(s) \| \mu_1((ds))^{m_1} \right] \cdots \left[\int_{[0,T]} \| A_p(s) \| \mu_p((ds))^{m_p} \right] \right)
\]

\[
\leq 2 |c_{m_1, \ldots, m_p}| M_1^{m_1} \cdots M_p^{m_p}.
\]

Since \(\sum_{m_1, \ldots, m_p=0}^{\infty} |c_{m_1, \ldots, m_p}| M_1^{m_1} \cdots M_p^{m_p} < \infty \), by (4) and Lebesgue Dominated Convergence Theorem, we obtain the result. \(\square \)
Corollary 6. Assume the same hypotheses as in Theorem 5. Then for any \(f \in \mathcal{A}(M_1, \cdots, M_p) \), and for any \(\phi \in X \),

\[
\lim_{n \to \infty} T_{\mu_1, \cdots, \mu_p, n} f((A_1, \mu_1, n), \cdots, (A_p, \mu_p)) \phi
= T_{\mu_1, \cdots, \mu_p} f((A_1, \mu_1), \cdots, (A_p, \mu_p)) \phi.
\]

Proof. Let \(f \in \mathcal{A}(M_1, \cdots, M_p) \). Then for any \(\phi \in X \), we have

\[
||T_{\mu_1, \cdots, \mu_p, n} f((A_1, \mu_1, n), \cdots, (A_p, \mu_p, n)) \phi
- T_{\mu_1, \cdots, \mu_p} f((A_1, \mu_1), \cdots, (A_p, \mu_p)) \phi||
\leq ||T_{\mu_1, \cdots, \mu_p, n} f((A_1, \mu_1, n), \cdots, (A_p, \mu_p, n))
- T_{\mu_1, \cdots, \mu_p} f((A_1, \mu_1), \cdots, (A_p, \mu_p)) || \phi || \to 0
\]
as \(n \to \infty \) by Theorem 5. This finishes the proof. \(\square \)

References

Byung Moo Ahn
Department of Mathematics
Soonchynhyang University Asan
Chungnam 336-745, Korea
E-mail: anbymo@sch.ac.kr

Choon Ho Lee
Department of Mathematics
Hoseo University Asan
Chungnam 336-795, Korea
E-mail: chlee@math.hoseo.ac.kr