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Abstract. Using the Hyers–Ulam–Rassias stability method, we inves-
tigate isomorphisms in quasi-Banach algebras and derivations on quasi-
Banach algebras associated with the Cauchy–Jensen functional equation

2f(
x + y

2
+ z) = f(x) + f(y) + 2f(z),

which was introduced and investigated in [2, 17]. The concept of Hyers–
Ulam–Rassias stability originated from the Th. M. Rassias’ stability the-
orem that appeared in the paper: On the stability of the linear mapping
in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. Further-
more, isometries and isometric isomorphisms in quasi-Banach algebras
are studied.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of
Ulam [29] concerning the stability of group homomorphisms: Let (G1, ∗) be a
group and let (G2, ¦, d) be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the
inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1? If the answer is affirmative, we would say that the equation
of homomorphism H(x ∗ y) = H(x) ¦H(y) is stable. The concept of stability
for a functional equation arises when we replace the functional equation by
an inequality which acts as a perturbation of the equation. Thus the stability
question of functional equations is that how do the solutions of the inequality
differ from those of the given functional equation?
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Hyers [10] gave a first affirmative answer to the question of Ulam for Banach
spaces. Let X and Y be Banach spaces. Assume that f : X → Y satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R
for each fixed x ∈ X. Th. M. Rassias [19] introduced the following inequality:
Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
for all x, y ∈ X. Th. M. Rassias [19] showed that there exists a unique R-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. The above inequality has provided a lot of influence in the de-
velopment of what is now known as Hyers–Ulam–Rassias stability of functional
equations. The stability problems of several functional equations have been ex-
tensively investigated by a number of authors and there are many interesting
results concerning this problem (see [3], [13]-[16], [20], [22]-[25]).

Gilányi [8] showed that if f satisfies the functional inequality

(1.1) ‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x + y)‖,
then f satisfies the Jordan–von Neumann functional inequality

2f(x) + 2f(y) = f(x + y) + f(x− y).

See also [27]. Fechner [7] and Gilányi [9] proved the Hyers–Ulam–Rassias sta-
bility of the functional inequality (1.1). Park, Cho, and Han [18] proved the
Hyers–Ulam–Rassias stability of functional inequalities associated with Jordan–
von Neumann type additive functional equations.

We recall some basic facts concerning quasi-Banach spaces and some pre-
liminary results.

Definition 1.1 ([5], [28]). Let X be a real linear space. A quasi-norm is a
real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all

x, y ∈ X.
The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on

X.
A quasi-Banach space is a complete quasi-normed space.
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A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation
invariant metric on X. By the Aoki–Rolewicz theorem [28] (see also [5]), each
quasi-norm is equivalent to some p-norm. Since it is much easier to work with
p-norms than quasi-norms, henceforth we restrict our attention mainly to p-
norms.

Definition 1.2 ([1]). Let (A, ‖·‖) be a quasi-normed space. The quasi-normed
space (A, ‖ · ‖) is called a quasi-normed algebra if A is an algebra and there is
a constant K > 0 such that ‖xy‖ ≤ K‖x‖ · ‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra.
If the quasi-norm ‖ · ‖ is a p-norm then the quasi-Banach algebra is called a

p-Banach algebra.

Throughout this paper, assume that A is a quasi-Banach algebra with quasi-
norm ‖ · ‖A and unit e and that B is a p-Banach algebra with p-norm ‖ · ‖B

and unit e′.
This paper is organized as follows: In Section 2, we investigate isomorphisms

in quasi-Banach algebras associated with the Cauchy–Jensen additive mapping.
In Section 3, we investigate derivations on quasi-Banach algebras associated

with the Cauchy–Jensen additive mapping.
In Section 4, we investigate isometries and isometric isomorphisms in quasi-

Banach algebras associated with the Cauchy–Jensen additive mapping.

2. Isomorphisms in quasi-Banach algebras

Definition 2.1. A C-linear mapping H : A → B is called a homomorphism in
quasi-Banach algebras if H(xy) = H(x)H(y) for all x, y ∈ A. If, in addition,
the mapping H : A → B is bijective, then the mapping H : A → B is called an
isomorphism in quasi-Banach algebras.

In this section, we investigate isomorphisms in quasi-Banach algebras asso-
ciated with the Cauchy–Jensen functional equation.

Theorem 2.2. Let r 6= 1 and θ be nonnegative real numbers, and f : A → B
a bijective mapping such that

‖µf(x) + f(y) + 2f(z)‖B ≤ ‖2f(
µx + y

2
+ z)‖B ,(2.1)

‖f(xy)− f(x)f(y)‖B ≤ θ(‖x‖2r
A + ‖y‖2r

A )(2.2)

for µ = 1, i and all x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each
fixed x ∈ A, then the bijective mapping f : A → B is an isomorphism in
quasi-Banach algebras.
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Proof. Let µ = 1 in (2.1). By Proposition 2.3 of [18], the mapping f : A → B
is Cauchy additive. By Theorem of [19], the mapping f : A → B is R-linear.

Letting µ = i, z = 0 and y = −ix in (2.1), we get

if(x)− f(ix) = if(x) + f(−ix) = 0

for all x ∈ A. So f(ix) = if(x) for all x ∈ A. For each λ ∈ C, λ = a + ib
(a, b ∈ R). Hence

f(λx) = f(ax + ibx) = af(x) + bf(ix) = af(x) + ibf(x) = λf(x)

for all x ∈ A. Thus f : A → B is C-linear.
(i) Assume that r < 1. By (2.2),

‖f(xy)− f(x)f(y)‖B = lim
n→∞

1
4n
‖f(4nxy)− f(2nx)f(2ny)‖B

≤ lim
n→∞

4nr

4n
θ(‖x‖2r

A + ‖y‖2r
A ) = 0

for all x, y ∈ A. So
f(xy) = f(x)f(y)

for all x, y ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i),

one can prove that the mapping f : A → B satisfies

f(xy) = f(x)f(y)

for all x, y ∈ A.
Therefore, the bijective mapping f : A → B is an isomorphism in quasi-

Banach algebras, as desired. ¤

Theorem 2.3. Let r 6= 1 and θ be nonnegative real numbers, and f : A → B
a bijective mapping satisfying (2.1) such that

(2.3) ‖f(xy)− f(x)f(y)‖B ≤ θ · ‖w‖r
A · ‖x‖r

A

for all x, y ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then the
bijective mapping f : A → B is an isomorphism in quasi-Banach algebras.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping
f : A → B is C-linear.

(i) Assume that r < 1. By (2.3),

‖f(xy)− f(x)f(y)‖B = lim
n→∞

1
4n
‖f(4nxy)− f(2nx)f(2ny)‖B

≤ lim
n→∞

4nr

4n
θ · ‖w‖r

A · ‖x‖r
A = 0

for all x, y ∈ A. So
f(xy) = f(x)f(y)

for all x, y ∈ A.
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(ii) Assume that r > 1. By a similar method to the proof of the case (i),
one can prove that the mapping f : A → B satisfies

f(xy) = f(x)f(y)

for all x, y ∈ A.
Therefore, the bijective mapping f : A → B is an isomorphism in quasi-

Banach algebras, as desired. ¤

3. Derivations on quasi-Banach algebras

Definition 3.1. A C-linear mapping δ : A → A is called a derivation if δ(xy) =
δ(x)y + xδ(y) for all x, y ∈ A.

We investigate derivations on quasi-Banach algebras associated with the
Cauchy–Jensen functional equation.

Theorem 3.2. Let r 6= 1 and θ be nonnegative real numbers, and f : A → A
a mapping such that

‖µf(x) + f(y) + 2f(z)‖A ≤ ‖2f(
µx + y

2
+ z)‖A,(3.1)

‖f(xy)− f(x)y − xf(y)‖A ≤ θ(‖x‖2r
A + ‖y‖2r

A )(3.2)

for µ = 1, i and all x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed
x ∈ A, then the mapping f : A → A is a derivation on A.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping
f : A → A is C-linear.

(i) Assume that r < 1. By (3.2),

‖f(xy)− f(x)y − xf(y)‖A = lim
n→∞

1
4n
‖f(4nxy)− f(2nx) · 2ny − 2nxf(2ny)‖A

≤ lim
n→∞

4nr

4n
θ(‖x‖2r

A + ‖y‖2r
A ) = 0

for all x, y ∈ A. So
f(xy) = f(x)y + xf(y)

for all x, y ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i),

one can prove that the mapping f : A → A satisfies

f(xy) = f(x)y + xf(y)

for all x, y ∈ A.
Therefore, the mapping f : A → A is a derivation on A, as desired. ¤

Theorem 3.3. Let r 6= 1 and θ be nonnegative real numbers, and f : A → A
a mapping satisfying (3.1) such that

(3.3) ‖f(xy)− f(x)y − xf(y)‖A ≤ θ · ‖x‖r
A · ‖y‖r

A

for all x, y ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then the
mapping f : A → A is a derivation on A.
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Proof. The proof is similar to the proofs of Theorems 2.2 and 3.2. ¤

4. Isometries and isometric isomorphisms in quasi-Banach algebras

Surjective isometries between normed vector spaces have been investigated
by several authors ([4], [6], [11], [12], [21], [26]).

Definition 4.1. A mapping I : A → B is called an isometry in quasi-Banach
algebras if

‖I(x)− I(y)‖B = ‖x− y‖A

for all x, y ∈ A.

We investigate isometries in quasi-Banach algebras associated with the Cau-
chy-Jensen functional equation.

Theorem 4.2. Let r 6= 1 and θ be nonnegative real numbers, and f : A → B
a mapping satisfying (2.1) such that

(4.1) | ‖f(x)‖B − ‖x‖A | ≤ θ‖x‖r
A

for all x ∈ A. Then the mapping f : A → B is an isometry in quasi-Banach
algebras.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping
f : A → B is additive.

(i) Assume that r < 1. It follows from (4.1) that

| ‖f(x)‖B − ‖x‖A | = lim
n→∞

1
2n
| ‖f(2nx)‖B − ‖2nx‖A | ≤ lim

n→∞
2nr

2n
θ‖x‖r

A = 0

for all x ∈ A. So ‖f(x)‖B = ‖x‖A for all x ∈ A. Since f : A → B is additive,

‖f(x)− f(y)‖B = ‖f(x− y)‖B = ‖x− y‖A

for all x, y ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i),

one can prove that the mapping f : A → B satisfies

‖f(x)− f(y)‖B = ‖x− y‖A

for all x, y ∈ A.
Therefore, the mapping f : A → B is an isometry in quasi-Banach algebras.

¤

Definition 4.3. A quasi-Banach algebra isomorphism H : A → B is called an
isometric isomorphism in quasi-Banach algebras if H is an isometry in quasi-
Banach algebras.

We investigate isometric isomorphisms in quasi-Banach algebras associated
with the Cauchy–Jensen functional equation.
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Theorem 4.4. Let r 6= 1 and θ be nonnegative real numbers, and f : A → B
a bijective mapping satisfying (2.1), (2.2) and (4.1). If f(tx) is continuous in
t ∈ R for each fixed x ∈ A, then the mapping f : A → B is an isometric
isomorphism in quasi-Banach algebras.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.2. ¤
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Math. 62 (2001), no. 3, 303–309.

[9] , On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), no. 4, 707–710.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.

S. A. 27 (1941), 222–224.
[11] N. Kalton, An elementary example of a Banach space not isomorphic to its complex

conjugate, Canad. Math. Bull. 38 (1995), no. 2, 218–222.
[12] S. Mazur and S. Ulam, Sur les transformation d’espaces vectoriels normé, C. R. Acad.
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