ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

YANG-HI LEE

Reprinted from the Bulletin of the Korean Mathematical Society
Vol. 45, No. 2, May 2008

©2008 The Korean Mathematical Society
ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

YANG-HI LEE

ABSTRACT. In this paper, we modify L. Cădariu and V. Radu’s result for the stability of the monomial functional equation

\[\sum_{i=0}^{n} n! C_i (-1)^{n-i} f(ix + y) - n! f(x) = 0 \]

in the sense of Th. M. Rassias. Also, we investigate the superstability of the monomial functional equation.

1. Introduction

Throughout this paper, let \(X \) be a vector space and \(Y \) a Banach space. Let \(n \) be a positive integer. For a given mapping \(f : X \to Y \), define a mapping \(D_n f : X \times X \to Y \) by

\[D_n f(x, y) := \sum_{i=0}^{n} n! C_i (-1)^{n-i} f(ix + y) - n! f(x) \]

for all \(x, y \in X \), where \(n! C_i = \frac{n!}{i!(n-i)!} \). A mapping \(f : X \to Y \) is called a monomial function of degree \(n \) if \(f \) satisfies the monomial functional equation \(D_n f(x, y) = 0 \). The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) := ax^n \) is a particular solution of the functional equation \(D_n f = 0 \). In particular, a mapping \(f : X \times X \to Y \) is called an additive (quadratic, cubic, quartic, respectively) mapping if \(f \) satisfies the functional equation \(D_1 f = 0 \) (\(D_2 f = 0 \), \(D_3 f = 0 \), \(D_4 f = 0 \), respectively).

In 1940, S. M. Ulam [27] raised a question concerning the stability of homomorphisms: Let \(G_1 \) be a group and let \(G_2 \) be a metric group with the metric \(d(\cdot, \cdot) \). Given \(\varepsilon > 0 \), does there exists a \(\delta > 0 \) such that if a mapping \(h : G_1 \to G_2 \) satisfies the inequality

\[d(h(xy), h(x)h(y)) < \delta \]

for all \(x, y \in G_1 \) then there is a homomorphism \(H : G_1 \to G_2 \) with

\[d(h(x), H(x)) < \varepsilon \]

Received December 3, 2007.
2000 Mathematics Subject Classification. Primary 39B52.
Key words and phrases. stability, monomial functional equation.

©2008 The Korean Mathematical Society
for all $x \in G_1$?

In 1941, D. H. Hyers [7] proved the stability theorem for additive functional equation $D_1 f = 0$ under the assumption that G_1 and G_2 are Banach spaces. In 1978, Th. M. Rassias [20] provided an extension of D. H. Hyers’s Theorem by proving the generalized Hyers-Ulam stability for the linear mapping subject to the unbounded Cauchy difference that he introduced in [20]. Th. M. Rassias’s Theorem provided a lot of influence for the rapid development of stability theory of functional equations during the last three decades. This generalized concept of stability is known today with the term Hyers-Ulam-Rassias stability of the linear mapping or of functional equations. Further generalizations of the Hyers-Ulam-Rassias stability concept have been investigated by a number of mathematicians worldwide (cf. [5, 6, 8, 9, 11, 12, 14, 17-19, 21-25]). In 1983, the Hyers-Ulam-Rassias stability theorem for the quadratic functional equation $D_2 f = 0$ was proved by F. Skof [26] and a number of other mathematicians (cf. [2, 3, 4, 10, 13]). The Hyers-Ulam-Rassias stability Theorem for the functional equation $D_3 f = 0$ and $D_4 f = 0$ was proved by J. Rassias [15, 16].

In 2007, L. Cădariu and V. Radu [1] proved the stability of the monomial functional equation $D_n f = 0$.

In this paper, we modify L. Cădariu and V. Radu’s result for the stability of the monomial functional equation $D_n f = 0$ in the sense of Th. M. Rassias and the superstability of the monomial functional equation $D_n f = 0$.

2. The stability of the monomial functional equation

Since the equalities

$$(1 - x^2)^n = \sum_{i=0}^{n} nC_i (-1)^i x^{2i},$$

$$(1 - x)^n(x + 1)^n = \left(\sum_{k=0}^{n} nC_k (-1)^k x^k\right)\left(\sum_{j=0}^{n} nC_j x^j\right) = \sum_{i=0}^{n} \sum_{l=0}^{2i} nC_i \cdot nC_{2i-l} (-1)^l x^{2i}$$

hold for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, the equality

$$nC_i (-1)^i = \sum_{l=0}^{2i} nC_i \cdot nC_{2i-l} (-1)^l$$

holds for all $n \in \mathbb{N}$.

Lemma 1. Let $f : X \rightarrow Y$ be a mapping satisfying the functional equation

$$D_n f(x, y) := \sum_{i=0}^{n} nC_i (-1)^{n-i} f(ix + y) - n! f(x)$$
for all $x, y \in X$. Then equality

$$f(2x) = 2^n f(x)$$

holds for all $x \in X$.

Proof. Using the equalities

$$nC_i(-1)^i = \sum_{l=0}^{2i} nC_l \cdot nC_{2i-l}(-1)^l$$
and

$$\sum_{i=0}^{n} nC_i(-1)^i = 0,$$

the equality

$$n!(f(2x) - 2^n f(x)) = D_n f(2x, (-k)x) - \sum_{j=0}^{n} nC_j D_n f(x, (j-k)x) = 0$$
holds for all $x \in X$ and $k \in \mathbb{N}$ as we desired. \hfill \Box

Now, we prove the stability of the monomial functional equation in the sense of Th. M. Rassias.

Theorem 2. Let p be a real number with $0 \leq p < n$ and X a normed space. Let $f : X \to Y$ be a mapping such that

$$\|D_n f(x, y)\| \leq \varepsilon(\|x\|^p + \|y\|^p)$$

for all $x, y \in X$. Then there exists a unique monomial function of degree n $F : X \to Y$ such that

$$\|f(x) - F(x)\| \leq \frac{\varepsilon}{n!} \cdot \frac{2^n}{2^n} \inf_{k \in \mathbb{N}} \frac{1}{2^n + 2^n + \sum_{j=0}^{n} nC_j |j-k|^p}$$

holds for all $x \in X$. The mapping $F : X \times X \to Y$ is given by

$$F(x) := \lim_{s \to \infty} \frac{f(2^s x)}{2^{ns}}$$

for all $x \in X$.

Proof. By (1), we get

$$\|n!(f(2x) - 2^n f(x))\| = \|D_n f(2x, (-k)x) - \sum_{j=0}^{n} nC_j D_n f(x, (j-k)x)\|$$

$$\leq \varepsilon(\|2x\|^p + \|kx\|^p + \sum_{j=0}^{n} nC_j \|x\|^p + \|(j-k)x\|^p)$$

$$= (2^p + k^p + 2^n + \sum_{j=0}^{n} nC_j |j-k|^p)\|x\|^p$$

for all $x \in X$ and $k \in \mathbb{N}$. Hence

$$\|f(x) - \frac{f(2x)}{2^n}\| \leq \frac{\varepsilon}{n! \cdot 2^n} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^{n} nC_j |j-k|^p)\|x\|^p$$
and
(4)
\[\| f(x) - \frac{f(2^m x)}{2^{nm}} \| \leq \sum_{s=0}^{m-1} \left\| \frac{f(2^s x)}{2^{sn}} - \frac{f(2^{s+1} x)}{2^{(s+1)n}} \right\| \]
\[\leq \frac{\varepsilon}{n!} \cdot 2^n \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j|^p) \sum_{s=0}^{m-1} \frac{2^{sp}}{2^{sn}} \|x\|^p \]
for all \(x \in X \). The sequence \(\left\{ \frac{f(2^s x)}{2^{sn}} \right\} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\left\{ \frac{f(2^s x)}{2^{sn}} \right\} \) converges for all \(x \in X \). Define \(F : X \to Y \) by
\[F(x) := \lim_{s \to \infty} \frac{f(2^s x)}{2^{sn}} \]
for all \(x \in X \). By (1) and the definition of \(F \), we obtain
\[D_n F(x, y) = \lim_{s \to \infty} \frac{D_n f(2^s x, 2^s y)}{2^{ns}} = 0 \]
for all \(x, y \in X \). Taking \(m \to \infty \) in (4), we can obtain the inequality (2) for all \(x \in X \).

Now, let \(F' : X \times X \to Y \) be another monomial function satisfying (2). By Lemma 1, we have
\[\| F(x) - F'(x) \| \leq \left\| \frac{1}{2^{ns}} (F - f)(2^s x) \right\| + \left\| \frac{1}{2^{ns}} (f - F')(2^s x) \right\| \]
\[\leq \frac{2^{np}}{2^{ns}} n! \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j|^p) \frac{\varepsilon}{2^p} \|x\|^p \]
for all \(x, y \in X \) and \(s \in \mathbb{N} \). As \(s \to \infty \), we may conclude that \(F(x) = F'(x) \) for all \(x \) as desired. \(\square \)

Theorem 3. Let \(p \) be a real number with \(p > n \) and \(X \) a normed space. Let \(f : X \to Y \) be a mapping satisfying (1) for all \(x, y \in X \). Then there exists a unique monomial function of degree \(n \) \(F : X \to Y \) such that
\[\| f(x) - F(x) \| \leq \frac{1}{n!} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j|^p) \frac{\varepsilon}{2^p} \|x\|^p \]
holds for all \(x \in X \). The mapping \(F : X \times X \to Y \) is given by
\[F(x) := \lim_{s \to \infty} 2^{ns} f(2^{-s} x) \]
for all \(x \in X \).

Proof. By (3), we get
\[\| f(x) - 2^n f\left(\frac{x}{2}\right) \| \leq \frac{\varepsilon}{n!} \cdot 2^n \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j|^p) \|x\|^p \]
for all \(x \in X \) and \(k \in \mathbb{N} \). The rest of the proof is similar with the proof of Theorem 2. \(\square \)

3. The superstability of the functional equation \(D_n f = 0 \)

Lemma 4. Let \(p \) be a real number with \(p < 0 \) and \(X \) a normed space. Let \(f : X \to Y \) be a mapping satisfying (1) for all \(x, y \in X \setminus \{0\} \). Then there exists a unique monomial function of degree \(n \) \(F : X \to Y \) such that

\[
\| f(x) - F(x) \| \leq \frac{2^p + 2^n}{n!(2^n - 2^p)} \varepsilon \| x \|^p
\]

holds for all \(x \in X \setminus \{0\} \).

Proof. As in the proof of Theorem 2, the inequality

\[
\| f(x) - \frac{f(2^m x)}{2^m} \| \leq \sum_{s=0}^{m-1} \| \frac{f(2^s x)}{2^s} - \frac{f(2^{s+1} x)}{2^{s+1}} \|
\]

\[
\leq \frac{\varepsilon}{n!} \inf_{k \geq n+1} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j - k|^p) \sum_{s=0}^{m-1} \frac{2^p}{2^m} \| x \|^p
\]

holds for all \(x \in X \setminus \{0\} \). Since \(p < 0 \), we get

\[
\inf_{k \geq n+1} (2^p + k^p + 2^n + \sum_{j=0}^{n} C_j |j - k|^p) = (2^p + 2^n)
\]

for all \(x \in X \setminus \{0\} \). The rest of the proof is the same to the proof of Theorem 2. \(\square \)

Now, we prove the superstability of the monomial functional equation.

Theorem 5. Let \(p \) be a real number with \(p < 0 \) and \(X \) a normed space. Let \(f : X \to Y \) be a mapping satisfying (1) for all \(x, y \in X \setminus \{0\} \). Then \(f \) is a monomial function of degree \(n \).

Proof. Let \(F \) be the monomial function of degree \(n \) satisfying (5). From (1), the inequality

\[
\| f(x) - F(x) \|
\]

\[
\leq \frac{1}{n} \| D_n(f - F)((k + 1)x, -kx) + (-1)^n(F - f)(-kx)
\]

\[
+ \sum_{i=2}^{n} nC_i(-1)^{n-i}(F - f)(i(k + 1)x - kx) - n!(F - f)((k + 1)x)\|
\]

\[
\leq \frac{1}{n} \left[\frac{2^p + 2^n}{n!(2^n - 2^p)} (k^p + \sum_{i=1}^{n-1} nC_{i+1} (ik + i + 1)^p + n!(k + 1)^p) \right]
\]

\[
+ (k + 1)^p + k^p \| x \|
\]

holds for all \(x \in X \setminus \{0\} \). The rest of the proof is the same to the proof of Theorem 2. \(\square \)
holds for all \(x \in X \setminus \{0\} \) and \(k \in \mathbb{N} \). Since \(\lim_{k \to \infty} (k^p + \sum_{i=1}^{n-1} C_{i+1}^i (ik + i + 1)^p + n!(k+1)^p) = 0 \) and \(\lim_{k \to \infty} (k^p + (k+1)^p) = 0 \) for \(p < 0 \), we get

\[
f(x) = F(x)
\]

for all \(x \in X \setminus \{0\} \). Since \(\lim_{k \to \infty} k^p = 0 \) and the inequality

\[
\|f(0) - F(0)\| \leq \frac{1}{n} \|D_n(f - F)(kx, -kx) + (-1)^n(F - f)(-kx)
\]

\[
+ \sum_{i=2}^{n} nC_i(-1)^{n-i}(F - f)((i-1)kx) - n!(F - f)(kx)\| \leq \frac{1}{n} \left[2 + \frac{2^n + 2^n}{n(2^n - 2^n)} \left(1 + \sum_{i=1}^{n-1} nC_{i+1}i^p + n! \right) k^p \|x\|^p \right]
\]

holds for any \(x \in X \setminus \{0\} \) and \(k \in \mathbb{N} \), we get

\[
f(0) = F(0).
\]

\[\square\]

References

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Korea
E-mail address: yanghi20hanmail.net