◈ 학술지
◈ 도서
◈ 전자학술지
◈ 투고요령
◈ 수학신간도서
◈ MSC
◈ 논문검색
◈ 학술행사
홈 > 학술정보 >학술행사 > 세미나
2018 서울대학교 수리과학부 세미나

Title
On high-order methods for moment-closure approximations of kinetic Boltzmann equations
Speaker
James Rossmanith   (Iowa State University )
Date
2018-08-14 11:00:00
Host
SNU
Place
27-220
Abstract
In many applications, the dynamics of gas and plasma can be accurately modeled using kinetic Boltzmann equations. These equations are integro-differential systems posed in a high-dimensional phase space, which is typically comprised of the spatial coordinates and the velocity coordinates. If the system is sufficiently collisional the kinetic equations may be replaced by a fluid approximation that is posed in physical space (i.e., a lower dimensional space than the full phase space). The precise form of the fluid approximation depends on the choice of the moment-closure. In general, finding a suitable robust moment-closure is still an open scientific problem. In this work we consider two specific closure methods: (1) a regularized quadrature-based closure (QMOM) and (2) a nonextensible entropy-based closure (QEXP). In QMOM, the distribution function is approximated by Dirac deltas with variable weights and abscissas. The resulting fluid approximations have differing properties depending on the detailed construction of the Dirac deltas. We develop a high-order discontinuous Galerkin scheme to numerically solve resulting fluid equations. We also develop limiters that guarantee that the inversion problem between moments of the distribution function and the weights and abscissas of the Dirac deltas is well-posed. In QEXP, the true distribution is replaced by a Maxwellian distribution multiplied by a quasi-exponential function. We develop a high-order discontinuous Galerkin scheme to numerically solve resulting fluid equations. We break the numerical update into two parts: (1) an update for the background Maxwellian distribution, and (2) an update for the non-Maxwellian corrections. We again develop limiters to keep the moment-inversion problem well-posed. The work on the regularized quadrature-based closures is joint with Erica Johnson (Bexar County) and Christine Wiersma (Iowa State), and the work on the nonextensible entropy-based closures is joint with Chi-Wang Shu (Brown).
개인정보보호정책 l 이메일주소집단수집금지 l 뷰어다운로드
qr코드